

CHEMISTRY ALTERNATIVE TO PRACTICAL (PAPER 4) (YEARLY)

About Thinking Process

When solving problems, we first analyse the questions and then gather relevant information until we are able to determine the answers. But for presentation reason, we need to organise, rearrange and then present ONLY the required workings and solutions.

Thinking process reveals the extra but relevant information which is not required as part of the solutions.

Operiod2008 to 2022OperiodJune & November,
Paper 4, Worked SolutionsPaper 4, Wor

Appointed Agents & Wholesalers in PAKISTAN:

BOOK LAND

Urdu Bazaar, Lahore. Tel: 042-37124656

NATIONAL BOOK SERVICE

Urdu Bazaar, Lahore. Tel: 042-37247310.

LAROSH BOOKS

Urdu Bazaar Lahore. Tel: 042-37312126.

BURHANI BOOK CENTRE

New Urdu Bazar, Karachi, Tel: 021-32634718

MARYAM ACADEMY

Urdu Bazaar, Karachi, Tel: 0331-2425264

TARIQ BOOK TOWN

Samar Garden, Hydari North nazimzbad, Karachi Tel: 021-34555918, 36649425

REHMAN BOOKS

College Road, Rawalpindi Tel: 051-5770603, 0313-5618976

WELCOME BOOKS

Soneri Masjid Road, Peshawar Cantt. Tel: 091-5274932, 0300-5860068

© REDSPOT PUBLISHING

Lahore,

Ĵ T₀l N₀:	042-35201010
D Mobile No:	0300-8447654
🗈 🗄 Mail:	info@redspot.com.pk
🖮 Website:	www.redspot.com.pk
1 Address:	P.O. Box 5041, Model Town, Pakistan.

All rights reserved. No part of this publication may be reproduced, copied or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher/ distributor.

С	
0	
N	About ATP Chemistry
	June / November 2008 Paper 4
TE	June / November 2009 Paper 4
	June / November 2010 Paper 4
N T S	June / November 2011 Paper 4
S	June / November 2012 Paper 4
	June / November 2013 Paper 4
	June / November 2014 Paper 4
	🖉 June / November 2015 Paper 4
	June / November 2016 Paper 4
	June / November 2017 Paper 4
	June / November 2018 Paper 4
	June / November 2019 Paper 4
	June / November 2020 Paper 4
	June / November 2021 Paper 4
	June / November 2022 Paper 4

'O' Level Chemistry (Alternative To Practical) 5070 (Yearly)

NONEMBER 2022

Answer all questions.

Question 1

Three colourless gases A, B and C have the properties shown.

gas	density	solubility in water
Α	more dense than air	soluble
В	more dense than air	insoluble
С	less dense than air	soluble

Some sets of apparatus, $\mathbf{P},\,\mathbf{Q}$ and $\mathbf{R},$ used to collect gases are shown.

(a) State which set of apparatus $P,\,Q$ or R is most suitable to collect gas A.

[1]
b) \mathbf{R} is used to collect gas \mathbf{B} .
(i) State why Q is not used to collect gas B .
[1]
(ii) State why \mathbf{R} is more suitable than \mathbf{P} to collect gas \mathbf{B} .
[1]
c) State why R is not used to collect gas C.
[1]
[Total: 4]

Question 2

A student electrolyses two aqueous solutions using the apparatus shown.

(a) Name apparatus E_{\cdot}

(b) Complete the table.

	anode (+)		cathode (-)	
solution	name of product	observation	name of product	observation
aqueous potassium iodide	iodine		hydrogen	
dilute sulfuric acid	oxygen			bubbles of colourless gas

[4]

(c) Describe the test used to identify oxygen gas.

[2]
[Total: 7]

Question 3

The equation for the reaction of magnesium with dilute hydrochloric acid is shown.

 $Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$

A student investigates the rate of this reaction at three different temperatures.

In each experiment the student adds dilute hydrochloric acid to magnesium. The volume of hydrogen in apparatus F is recorded every 30 seconds.

- (a) Name apparatus F.
- (d) In each of the three experiments the contents of the flask are at a different temperature.
 - All other variables are kept constant.

The three experiments are labelled **X**, **Y** and **Z**.

experiment	temperature/°C
X	20
Y	40
Z	60

'O' Level Chemistry ATP

[2]

The hydrochloric acid is in excess in each of the three experiments. A catalyst is not used. Identify two variables that are kept constant in this investigation.

1 2

(e) The student plots a graph of the results.

(i) Describe how the graph is used to decide which experiment has the greatest rate.

(ii) Write a letter in each box on the graph to identify experiments ${f X},{f Y}$ and ${f Z}$.	[1]
(iii)Describe how the graph shows that the reactions stop.	
	[1]
(iv)Explain why the reactions stop.	
	[Total: 11]

Question 4

A student is provided with two bottles labelled **A** and **B** and a supply of water. One of the bottles contains 1.00 g of solid potassium chloride, KCl. The other bottle contains 1.00 g of solid calcium chloride, $\text{Ca}Cl_2$. When potassium chloride dissolves in water the change is endothermic. When calcium chloride dissolves in water the change is exothermic. Plan experiments, based on dissolving the solids in water, to decide:

- which compound is in each bottle
- which compound produces the greatest heat change per gram of solid.

Your plan may use any of the apparatus normally found in a chemistry laboratory but no other chemicals.

Your plan must state all the measurements you need to make.

Your plan must use the same experimental procedure for each solid.

[6]

Question 5

Solution **K** is dilute sulfuric acid, H_2SO_4 .

A student determines the concentration of solution \mathbf{K} using a method that involves titration. The student measures 20.0 cm³ of solution \mathbf{K} using a pipette.

The student makes up the solution to 250 cm^3 with distilled water. This is solution L.

(a) Name another piece of apparatus that could be used instead of a pipette to accurately measure 20.0 cm^3 of solution K.

	[1]
(b) Name the container in which solution L is made.	
	[1]
(c) A pipette is used to transfer 25.0 cm^3 of solution L into a conical flask.	
Name the other piece of apparatus that is used with the pipette.	

'O' Level Chemistry ATP	NOVEMBER 2022 ≠ PAGE 6
(d) The student adds three drops of methyl orange to solution L in the flask on a white tile.	ne conical flask and then places
The student fills a burette with 0.100 mol/dm 3 potassium hydro	xide, KOH(aq).
The KOH(aq) is added to the flask until there is a colour change	
(i) State which liquid should be used to wash out the burette before for use in the titration.	filling the burette with KOH(aq)
(ii) Explain why the conical flask is placed on a white tile.	
(iii) State the colour change of the methyl orange indicator at the	e end-point.

(e) The student does three titrations. The diagrams below show parts of the burette with the liquid levels both at the beginning and at the end of each titration.

Use the diagrams to complete the following table.

titration number	1	2	3
final burette reading /cm³			
initial burette reading /cm ³			
volume of KOH(aq) added/cm ³			
best titration results (\checkmark)			

Tick (\checkmark) the best titration results in the table.

Use the best titration results to calculate the average volume of KOH(aq) used.

..... cm³ [4]

(f)	Calculate the number of moles of KOH in the average volume of $0.100\ mol/dm^3$ of KOH(aq) used in (e).
	mol [1]
(g)	The equation for the reaction of potassium hydroxide with sulfuric acid is shown.
	$2\mathrm{KOH} + \mathrm{H_2SO_4} \rightarrow \mathrm{K_2SO_4} + 2\mathrm{H_2O}$
	Use this equation to calculate the number of moles of $ m H_2SO_4$ in 25.0 cm ³ of solution L.
	mal [1]
(h)	$\label{eq:calculate} {\rm Margin} {\rm Margin}$
	2 1
<i>(</i> •)	
(i)	Deduce the number of moles of H_2SO_4 in 20.0 cm ³ of solution K .
	mol [1]
(j)	Calculate the concentration of solution K in mol/dm ³ .
	mol / dm^3 [1]
(k)	A different student does the same experiment using 30 drops of methyl orange instead of 3 drops of methyl orange.
	Methyl orange is acidic.
	State if the average titration volume of KOH(aq) is smaller, larger, or unchanged when 30 drops of methyl orange are used.
	Explain your answer.
	<i>[Total: 17]</i>

SOLUTIONS - NOVEMBER 2022

Q1 - Solution

(a) P

- (b) (i) B is denser than air.
 - (ii) As gas **B** is insoluble in water, it will displace water and collect in the gas jar. In setup **R**, it is possible to tell when the gas jar is full.
- (c) C is soluble in water and will dissolve in the gas jar.

Q2 - Solution

(a) Beaker.

(b)

	anode (+)		cathode (-)	
solution	name of product	observation	name of product	observation
aqueous potassium iodide	iodine	Brown liquid is observed	hydrogen	Bubbles of colorless gas are observed
dilute sulfuric acid	oxygen	Bubbles of colorless gas are observed	Hydrogen	bubbles of colourless gas

(c) Test: A glowing splint is brought near the gas sample.Observation: If the glowing splint relights, the gas is oxygen.

Q3 - Solution

- (a) Gas syringe.
- (b) Thermostatically controlled water bath can be used to control the temperature of the setup.
- (c) (i) Test: A burning splint is brought near the gas sample. Observation: A pop sound is made if the gas is hydrogen.
 - (ii) The change in the mass of the flask and its contents can be measured with respect to time to measure the rate of reaction.
- (d) 1. Concentration and Volume of the acid.
 - 2. Mass and particle size of Magnesium.

COMMENT on ANSWER

(a) A gas which is denser than air is collected in the gas jar while for a gas which is less dense than air, the gas jar is inverted to collect the gas.

- COMMENT on ANSWER
- (d) In order to study the effect of temperature, it is important to keep the other factors that effect the rate of reaction constant. For instance, the surface area of Magnesium needs to be constant for all experiments.

(iii) As the graph levels off, the volume of hydrogen produced becomes constant which shows that the reaction has stopped.

(iv) When all the Magnesium has been used up, the reaction stops.

Q4 - Solution

In order to measure the temperature change when the solids are dissolved in water, a thermometer is used. The thermometer is inserted inside the bottles to measure the heat change. The initial temperature of each bottle is recorded. Equal volume of water is added in both the bottles. The solutions are stirred and the temperature change is measured. The bottle in which the temperature increases, the solid is identified as calcium chloride. On the other hand, the bottle in which the temperature falls is potassium chloride. The heat change is calculated by subtracting the initial temperature from the final temperature. The bottle with largest temperature change gives us the compound with the greatest heat change per gram.

Q5 - Solution

- (a) A burette is also suitable to measure 20.0 cm^3 of solution.
- (b) Graduated or volumetric flask.
- (c) A pipette filler is used along with the pipette.
- (d) (i) Potassium Hydroxide.
 - (ii) In order to see the color change of the indicator clearly, a white tile is used.
 - (iii) The colour changes from Red to orange.
- (e)

titration number	1	2	3
final burette reading /cm 8	24.2	46.5	32.7
initial burette reading / ${ m cm}^3$	0.0	25.2	11.2
volume of KOH(aq) added / cm^3	24.2	21.3	21.5
best titration results (\checkmark)		✓	√

Average volume of KOH = $\frac{(21.3 + 21.5)}{2}$ = 21.4 cm³

COMMENT on ANSWER

(d) (i) It is a good lab practice to wash the burette with water and then with the solution to be added in it before adding the solution.

ions. 🤊

- (f) Moles of KOH = $0.100 \times \frac{21.4}{1000} = 0.00214$ mol
- (g) Ratio of $KOH: H_2SO_4 = 2:1$ $\therefore \quad \text{Moles of } H_2 SO_4 = \frac{0.00214}{2} = 0.00107 \text{ mol}$
- (h) Moles of H_2SO_4 in 250 cm³ = 0.00107 × 10 $= 0.0107 \ mol$
- (i) Moles of H_2SO_4 in 20.0 cm³ of K = 0.0107 mol
- (j) Concentration of solution $\mathbf{K} = \frac{0.0107}{(20 \times 10^{-3})} = 0.535 \text{ mol}/\text{dm}^3$
- (\mathbf{k}) As methyl orange is acidic, so more KOH is used to neutralise the solution. Therefore, the titration volume of KOH will be larger when 30 drops of methyl orange are added.

Q6 - Solution

(a)

reagents	copper(II) chloride	zinc sulfate	X	
aqueous sodium hydroxide	Blue Precipitate observed	White precipitate observed	green precipitate	
aqueous sodium hydroxide in excess	The precipitate remains insoluble in excess NaOH	Precipitate dissolve in excess NaOH	precipitate remains	
aqueous ammonia	Blue precipitate observed	White precipitate observed	green precipitate	
aqueous ammonia in excess	Deep blue solution formed as the precipitate dissolve in excess ammonia	Colourless solution formed as the precipitate dissolve in excess ammonia	precipitate remains	
aqueous silver nitrate and dilute nitric acid	White precipitate observed	No change	yellow precipitate	COMMENT on ANSWER
aqueous barium nitrate and dilute nitric acid	No change	White precipitate observed	no change	green precipitates on addition of NaOH and NH ₃ , suggests the presence of Fe ²⁺ ions. On the other hand, the
(b) Iron(II) Iodide	presence of yellow precipitates indicates the presence of lodide			

(**b**) (**i**) 95 °C

- (ii) If the initial temperature of water is 15 °C, the final temperature in this experiment will reach above 100 °C at which the water boils.
- (iii) Use water at a temperature below 4 °C (Use ice instead).