C	Syllabus
Ο	
Ν	Topic 1 Set Language and Notation
	Topic 2 Functions
	Topic 3 Quadratic Functions
=	Topic 4 Indices and Surds
N	Topic 5Factors of Polynomials
O N T E N T S	Topic 6 Simultaneous Equations
	Topic 7 Logarithmic & Exponential Functions
S	Topic 8 Straight Line Graphs
	Topic 9 Circular Measure
	Topic 10 Trigonometry
	Topic 11 Permutations and Combinations
	Topic 12 Binomial Expansions
	Topic 13 Vectors in 2 Dimensions
	Topic 14 Relative Velocity
	Topic 15 Matrices
	Topic 16 Differentiation and Applications
	Topic 17 Integration and Applications
	Revision
	J une 2007 Paper 1 & 2
	December 2007 Paper 1 & 2
	June 2008 Paper 1 & 2
	December 2008 Paper 1 & 2
	June 2009 Paper 1 & 2
	December 2009 Paper 1 & 2

GCE 'O' Level Additional Mathematics (Topical)

'O' Additional Mathematics (Topical)

Topic 1

Set Language and Notation

1 (J06/P2/Q6)

Questions are not shown in Preview

Question 1

Thinking Process

- (a) (i) Shade the region where the circle representing Physics and Chemistry overlap but out of the circle representing Biology.
 - (ii) Shade the entire region that is out of the circle representing Physics but in the circle representing Chemistry and the circle representing Biology.
- (b) *F* Draw the 2 cases of subsets and disjoint sets.

Solution

$$16 - x + x + 10 - x = 20$$

26 - x = 20
x = 6

(i) Maximum value of $n(F \cap S) = 10$ Minimum value of $n(F \cap S) = 6$

(ii) Maximum value of $n(F \cup S) = 20$ Minimum value of $n(F \cup S) = 16$

2 (D06/P1/Q1)

Questions are not shown in Preview

Question 2

Thinking Process

- (i) The symbol for 'not an element' is \notin .
- (ii) The elements that are not in set *B* is denoted by *B*.
- (iii) C and D are disjoint sets.

Solution with **TEACHER'S COMMENTS** (i) $x \notin A$.

(ii)
$$n(B') = 16$$
.

(iii) $C \cap D = \phi$.

 $C \cap D = \phi$ but $n(C \cap D) = 0$. Do not write $C \cap D = 0$.

- **'O' Additional Mathematics** (Topical)
- **3** (J05/P2/Q8)

Questions are not shown in **Preview**

Question 3

Topic 1 Set Language and Notation ▷ Page 2

4 (D05/P1/Q2)

Questions are not shown in **Preview**

Question 4

Thinking Process

- (i) Since $n(C \cap D) = k$, $n(C) = 7 \times n(C \cap D) \implies n(C \cap D') = 7k - k = 6k$. Similarly, $n(D \cap C') = 4k - k = 3k$.
- (ii) Given that $n(C' \cap D') = 165\ 000$, find $n(\varepsilon)$.

Solution

$$= 6k$$
$$n(D \cap C') = 4k - k$$

$$= 3k$$

(ii) Given $n(C' \cap D') = 165\ 000$ $n(\varepsilon) = 6 \times 165\ 000$ \Rightarrow = 990 000

Thinking Process

- (a) (i) The whole set of B which is out of A.
- The whole set of B with the region out of A. (ii)
- (b) (i) The intersection of A and B but out of C. (ii) The whole of B and C but out of A.

Solution

(a) (i) $A' \cap B$. (ii) $B \cup A'$.

 $A' \cap (B \cup C)$

'O' Additional Mathematics (Topical)

Topic 16 Differentiation and Applications \Rightarrow Page 1

Topic 16

Differentiation and Applications

1 (J06/P1/Q1)

Questions are not shown in Preview Question 1

Thinking Process

Differentiate the equation to find $\frac{dy}{dx}$ and substitute x = 2

into $\frac{\mathrm{d}y}{\mathrm{d}x}$ to find gradient.

Solution

$$y = (x - 1)(2x - 3)^{8}$$

$$\frac{dy}{dx} = (x - 1) \cdot 8(2x - 3)^{7} \cdot (2) + (2x - 3)^{8} \cdot (1)$$

$$= (2x - 3)^{7} \cdot [16(x - 1) + (2x - 3)]$$

$$= (2x - 3)^{7} \cdot (16x - 16 + 2x - 3)$$

$$= (2x - 3)^{7} \cdot (18x - 19)$$

At
$$x = 2$$
, gradient of curve
= $[2(2) - 3]^7 \cdot [18(2) - 19]$
= $36 - 19$
= 17

2 (J06/P2/Q1)

Questions are not shown in Preview

Question 2

Thinking Process

 \mathscr{F} Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.

Apply related rate of change: $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$

Solution

$$y = (3x - 1) \cdot \ln x$$

$$\frac{dy}{dx} = (3x - 1) \cdot \left(\frac{1}{x}\right) + (\ln x) \cdot (3)$$

$$= \frac{3x - 1}{x} + 3 \ln x$$

At
$$x = 1$$
, $\frac{dy}{dx} = \frac{3-1}{1} + 3 \ln 1$
= 2
 $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$
= 2 × 3
= 6

- \therefore The rate of increase of y when x = 1 is 6 units / sec.
- **3** (J06/P2/Q4 a)

Question 3

Thinking Process

(a)
$$\frac{\mathrm{d}}{\mathrm{d}x} \mathbf{e}^{\mathrm{f}(x)} = \mathrm{f}^{\mathrm{t}}(x) \cdot \mathrm{e}^{\mathrm{f}(x)}$$

Solution

(a)
$$\frac{d}{dx} e^{\tan x} = \sec^2 x \cdot e^{\tan x}$$

4 (J06/P2/Q9)

Questions are not shown in Preview

Question 4

Thinking Process

- (i) Let 120 =total surface area of the cuboid and make h the subject of the formula.
- (ii) Find the volume of the cuboid and substitute the expression for h into the formula for V.
- (iii) Equate $\frac{4x}{3}$ to the expression of *h* found in (i). Find

 $\frac{\mathrm{d}v}{\mathrm{d}x}$ and substitute the value of x in and show that

$$\frac{\mathrm{d}v}{\mathrm{d}x} = 0$$

Solution

(i)
$$2(2x)(x) + 2xh + 2(2x)(h) = 120$$
$$\Rightarrow 2x^{2} + xh + 2hx = 60$$
$$\Rightarrow 2x^{2} + 3hx = 60$$
$$\Rightarrow 3hx = 60 - 2x^{2}$$
$$\Rightarrow h = \frac{60 - 2x^{2}}{3x}$$

(ii)
$$V = (2x)(x)(h)$$

 $= 2x^{2}\left(\frac{60-2x^{2}}{3x}\right)$
 $= 2x^{2}\left(\frac{20}{x} - \frac{2x}{3}\right)$
 $= 40x - \frac{4x^{3}}{3}$ (shown)
(iii) $h = \frac{4x}{3}$
 $\Rightarrow \frac{4x}{3} = \frac{60-2x^{2}}{3x}$
 $\Rightarrow 12x^{2} = 180 - 6x^{2}$
 $\Rightarrow 18x^{2} = 180$
 $x^{2} = 10$
 $V = 40x - \frac{4x^{3}}{3}$
 $\frac{dv}{dx} = 40 - 4x^{2}$
At $x^{2} = 10$, $\frac{dv}{dx} = 40 - 4(10)$
 $= 0$ (shown)

$$\therefore$$
 V has a stationary value when $h = \frac{4x}{3}$.

5 (D06/P1/Q3)

Thinking Process

- (i) Find $\frac{dy}{dx}$. Substitute x = 2 into $\frac{dy}{dx}$.
- (ii) Find δy given that $\delta y \approx \frac{\mathrm{d}y}{\mathrm{d}x} \cdot \delta x$.

Solution

(i)
$$y = \frac{8}{(3x-4)^2}$$

 $y = 8(3x-4)^{-2}$
 $\frac{dy}{dx} = -16(3x-4)^{-3} \cdot (3)$
 $= \frac{-48}{(3x-4)^3}$
At $x = 2$, $\frac{dy}{dx} = \frac{-48}{(6-4)^3}$
 $= \frac{-48}{8}$
 $= -6$

 \therefore Gradient of curve at x = 2 is -6.

(ii)
$$\delta y \approx \frac{\mathrm{d}y}{\mathrm{d}x} \cdot \delta x$$

 $\approx -6p$

Topic 16 Differentiation and Applications > Page 2

6 (D06/P1/Q9)

Questions are not shown in Preview

Question 6

Thinking Process

(i)
$$\mathscr{F}$$
 Apply quotient rule to find $\frac{dy}{dx}$. Show $\frac{dy}{dx} \neq 0$.

(ii) 🖋 Find co-ord. of P and Q.

Solution

(i)
$$y = \frac{2x-4}{x+3}$$

 $\frac{dy}{dx} = \frac{(x+3)(2) - (2x-4)}{(x+3)^2}$
 $= \frac{2x+6-2x+4}{(x+3)^2}$
 $= \frac{10}{(x+3)^2}$
Since $(x+3)^2 \ge 0$, $\Rightarrow \frac{10}{(x+3)^2} > 0$, the curve has

no turning points.

(ii) At
$$y = 0$$
, $\frac{2x-4}{x+3} = 0$
 $\Rightarrow 2x-4 = 0$
 $\Rightarrow x = 2$
P is (2, 0)
At *P*(2, 0), $\frac{dy}{dx} = \frac{10}{(2+3)^2}$
 $= \frac{10}{25}$
 $= \frac{2}{5}$
Gradient of tangent $= \frac{2}{5}$
 $y-0 = \frac{2}{5}(x-2)$
 $y = \frac{2}{5}x - \frac{4}{5}$ (equation of tangent)
At $x = 0$, $y = -\frac{4}{5}$
 $\therefore Q\left(0, -\frac{4}{5}\right)$
 \therefore Area of $\Delta POQ = \frac{1}{2} \times (2) \times \left(\frac{4}{5}\right)$
 $= \frac{4}{5}$ sq. units

means " before that, do this ! "

Answer all the questions.

1 Topic: 2

Questions are not shown in Preview

Question 1

Thinking Process

- (i) To find range \mathscr{F} find f(x) for x > 0.
- (ii) To find $f^{-1} \not F$ let y = f(x) and express x in terms of y.
- (iii) \mathcal{J} Domain of $f^{-1}(x)$ = Range of f(x).

Solution

- (i) Range of f: $f(x) > \frac{1}{e}$ Ans.
- (ii) $f(x) = e^{x-1}$

Let
$$f(x) = y$$

$$\Rightarrow \qquad y = e^{x-1}$$

$$\ln y = \ln e^{x-1}$$

$$\ln y = x - 1$$

 $x = 1 + \ln|y| \qquad \because x = f^{-1}(y)$

 $\therefore \quad \mathbf{f}^{-1}(y) = 1 + \ln|y|$

or
$$f^{-1}(x) = 1 + \ln|x|$$
 Ans

- (iii) Domain of $f^{-1}(x) = \text{range of } f(x)$ \therefore domain of f^{-1} : $x > \frac{1}{e}$ Ans.
- **2** Topic: 12

Questions are not shown in Preview

Question 2

Thinking Process

- (i) Expand using binomial theorem for up to four terms.
- (ii) Expand $\left(2-\frac{x}{2}\right)^6$ up to the term x^3 . Multiply $(1+x)^2$ and $\left(2-\frac{x}{2}\right)^6$ up to term x^3 .

Solution

(i)
$$\left(2-\frac{x}{2}\right)^{6}$$

 $= 2^{6} + {}^{6}C_{1}(2)^{5}\left(-\frac{x}{2}\right)^{1} + {}^{6}C_{2}(2)^{4}\left(-\frac{x}{2}\right)^{2}$
 $+ {}^{6}C_{3}(2)^{3}\left(-\frac{x}{2}\right)^{3} + ...$
 $= 64 + 6(32)\left(-\frac{x}{2}\right) + 15(16)\left(\frac{x^{2}}{4}\right) + 20(8)\left(-\frac{x^{3}}{8}\right) + ...$
 $= 64 - 96x + 60x^{2} - 20x^{3} + ...$ Ans.
(ii) $(1+x)^{2}\left(2-\frac{x}{2}\right)^{6}$
 $= (1+2x+x^{2})(64-96x+60x^{2}-20x^{3} +)$
 $= - 20x^{3} + 120x^{3} - 96x^{3} +$

 \therefore coefficient of $x^3 = 4$ Ans.

Questions are not shown in Preview

Question 3

³ Topic: 8

Thinking Process

- (i) Form a new table for x against x^2y and draw the graph.
- (ii) To find a and b \mathscr{J} rewrite the equation in linear form: Y = mX + C.

Solution

(i)

ii)
$$y = \frac{a}{x^2} + \frac{b}{x}$$

 $\Rightarrow x^2y = a + bx$
 $\Rightarrow x^2y = b(x) + a$ (1)
from graph, using two points, $A(1.2, 16.5)$ and
 $B(8.5, 90)$, gradient $= \frac{90 - 16.5}{8.5 - 1.2} = \frac{73.5}{7.3} = 10.1$
from equation (1), gradient $= b$
 $\therefore b = 10.1$ Ans.
from equation (1), y-intercept $= a$
from graph, y-intercept $= 5$

$$\therefore a = 5$$
 Ans.

4 Topic: 16

Question 4

Thinking Process

To find stationary points \mathscr{J} find $\frac{dy}{dx}$ and equate it to 0 to solve for stationary points.

To find the nature β evaluate $\frac{d^2y}{dx^2}$.

If $\frac{d^2y}{dx^2} < 0$ at the given value of *x*, *y* is maximum.

If
$$\frac{d^2 y}{dx^2} > 0$$
, y is minimum.

Solution

$$y = x^{3} + 3x^{2} - 45x + 60$$

$$\frac{dy}{dx} = 3x^{2} + 6x - 45$$

For stationary points, $\frac{dy}{dx} = 0$

$$\Rightarrow 3x^{2} + 6x - 45 = 0$$

 $x^{2} + 2x - 15 = 0$
 $(x + 5)(x - 3) = 0$
∴ $x = -5$, or $x = 3$
When $x = -5$, $y = (-5)^{3} + 3(-5)^{2} - 45(-5) + 60$

$$= -125 + 75 + 225 + 60 = 235$$

When
$$x = 3$$
, $y = (3)^3 + 3(3)^2 - 45(3) + 60$
= $27 + 27 - 135 + 60 = -21$

 \therefore coordinates of the stationary points are (-5, 235) and (3, -21) Ans.

Differentiating
$$\frac{dy}{dx}$$
 w.r.t. x.
 $\frac{d^2y}{dx^2} = 6x + 6$
When $x = -5$, $\frac{d^2y}{dx^2} = 6(-5) + 6 = -24 < 0$
 \therefore (-5, 235) is a maximum point on the curve. **Ans**
When $x = 3$, $\frac{d^2y}{dx^2} = 6(3) + 6 = 24 > 0$

 \therefore (3, -21) is a minimum point on the curve. **Ans.**